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SUMMARY

A new numerical method is developed to efficiently solve the unsteady incompressible Navier–Stokes
equations with second-order accuracy in time and space. In contrast to the SIMPLE algorithms, the
present formulation directly solves the discrete x- and y-momentum equations in a coupled form. It is
found that the present implicit formulation retrieves some cross convection terms overlooked by the
conventional iterative methods, which contribute to accuracy and fast convergence. The finite volume
method is applied on the fully staggered grid to solve the vector-form momentum equations. The
preconditioned conjugate gradient squared method (PCGS) has proved very efficient in solving the
associate linearized large, sparse block-matrix system. Comparison with the SIMPLE algorithm has
indicated that the present momentum coupling method is fast and robust in solving unsteady as well as
steady viscous flow problems. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Good progress has been made regarding development of time-accurate numerical methods for
the incompressible Navier–Stokes equations [1–6]. These methods share the difficulty of being
less compact than the compressible flow formulations because the governing equations lack an
explicit pressure equation. The absence of the time derivative term in the continuity equation
presents another difficulty, that of disapproving the matrix form, which is powerful in the
compressible flow computation.

The numerical formulations for the unsteady incompressible Navier–Stokes equations using
Poisson’s pressure equation can be classified into three categories. The first is the semi-implicit
schemes using the uncoupled momentum equations, adopting implicit finite difference approx-
imations for the pressure gradient terms only. The MAC method [1] is an example of this and
it suffers from serious stability limitations. The second category solves the momentum
equations iteratively using the implicit finite difference equations. In this case, the momentum
equations are not fully coupled until a complete convergence is reached at each time level.
Methods such as those from Gosman and Watkins [2] and Patanka [3] fall in this group and
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are computationally heavy, since the steady iterative methods are employed at each time step
to compute the unsteady flow. The methods in the third category eliminate shortcomings of
the second group, as in Issa et al. [4] and Braza et al. [5]. These methods are non-iterative, but
are still in the category using uncoupled momentum equations.

Apart from these earlier methods, a numerical method recently appeared adopting an
approximate factorization [6]. Although it solves two momentum equations in a coupled form
on the non-staggered grid, it faces the difficulty of boundary conditions on the wall in the
alternative-direction sweeping process. It also had to introduce an artificial numerical dissipa-
tion term to suppress wiggles in the computation.

This paper develops a numerical formulation for the incompressible Navier–Stokes equa-
tions that solves the coupled x- and y-momentum equations simultaneously with second-order
accuracy in time and space. The trapezoidal formula [7,8] is used for the time derivatives and
a fully staggered grid is used to compute the momentum flux through the cell boundaries, to
avoid the so-called checkerboard pressure field [3]. This method produces a block matrix
equation in the predictor step that is solved in a few iterations by the PCGS (preconditioned
conjugate gradient squared) algorithm [9,10]. In the correction step, the velocity and pressure
variables are updated using an auxiliary potential function [11], by which the flow field finally
becomes dilatation free. It has been found that the present implicit-coupled momentum
formulation retrieves some cross convection terms, overlooked by the earlier implicit methods
based on the uncoupled momentum equations. The present numerical method has been
meticulously tested for both accuracy and convergence rate using some steady and unsteady
flow problems.

2. TEMPORAL DIFFERENCING

The incompressible Navier–Stokes equations are written in the strong conservation law form
in two dimensions
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Applying the trapezoidal time differencing to the momentum equation (1), a locally linearized
system for the unknown vector q is obtained,�
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where I is an identity matrix, and A and B are
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The vector equation (6) has the following two components
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These equations clearly demonstrate the coupling of the u- and 6-velocity components and are
in the strong conservation law form, as indicated by Equation (1). Equations (9) and (10) can
be represented in a unified form,
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where V indicates the strength of the convective flow and 8 does a transportable property of
the fluid. In Equation (11), 8 at the time level n is multiplied to the unknown vector Vn+1, and
8 at the time level n+1 to the vector Vn. The presence of these terms distinguishes the present
method from the earlier formulations reported in References [1–5].
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3. FINITE VOLUME APPROXIMATION

The momentum equation (11) in the strong conservation law form is now integrated over
control volumes: the u-cell and 6-cell defined on a staggered mesh in Figure 1&&
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The boundary integrals occur by the Gauss divergence theorem, as in&&
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where n is the outward unit vector normal to the boundary. Assuming that the variables V and
9p are constant over a cell area A8, and substituting u in lieu of 8 for the x-momentum
equation, we obtain
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The intermediate velocity at the cell boundary points (e, w, n and s) in Figure 1 is calculated
from the nodal points (E, W, N and S) using the second-order linear interpolation. Central
differencing of the spatial derivatives in Equation (14) gives, for a cell,

(Cu+ap)up
n+1=% anbunb

n+1+% bnb6nb
n+1+dxpn+Su, (15)

where up is the value at the cell center, and the subscript nb is used to indicate neighborhood
points around the u-cell. Discretization of the y-momentum equation can be made in a similar
manner. The second term on the right-hand side of Equation (15), what is called ‘the cross
convection term’, is brought about by coupling of the momentum equations, which do not
appear explicitly in all other implicit iterative methods based on the uncoupled momentum
equations. These terms contribute to improved accuracy and fast convergence for the present
algorithm.

The two momentum equations, locally linear, are now represented in a matrix form in the
computational domain,

CX=R, (16)

where the coefficient matrix C has the following directional elements

C= [asi, j
, asei, j

, . . . , awi, j
, api, j

, aei, j
, . . . , anwi, j

, ani, j
]. (17)

Due to the fully structured and staggered grid, the matrix C becomes a banded matrix with
seven block diagonals, each block being a 2×2 matrix representing linkage between the u- and
6-variables at each mesh point. In particular, when a uniform grid is used, the diagonal term
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Figure 1. Staggered grid used for control volumes.
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in a row of the matrix C is proportional to Dx2 and Dt/Re, whereas the off-diagonal terms are
proportional to DtDx and Dt/Re. The matrix C then becomes less diagonally dominant when
a large time step is taken for a fine mesh, or when the Reynolds number becomes large.

The solution of the linear system (16) is not divergence-free yet. Let V* be the velocity that
satisfies both the continuity equation and the discretized momentum equations. Then Equation
(15) can be written as

(Cu+ap)up*=% anbunb* +% bnb6nb* +dxp*+Su, (18)

where p* is the consistent pressure that satisfies the momentum equations. Then V* and Vn+1

can be connected by an auxiliary potential function [11], namely,

V*=Vn+1−9f. (19)

By taking a divergence in the above, a Poisson equation is obtained

92f=9 ·Vn+1. (20)

This equation is integrated over the p-cell shown in Figure 1.
The linear system of Equation (16) is solved by the matrix solver PCGS algorithm, while 8

is obtained from (20). The pressure is obtained from

p*=pn+
f

Dt
. (21)

The velocity is calculated from Equation (19). Equation (21) is derived by substituting
Equation (19), after subtracting Equation (18) from (15). The velocity field obtained this way
becomes strictly divergence-free at each time level.

4. PCGS METHOD

The sparse matrix C in Equation (16) is asymmetric and indefinite, having elements of a 2×2
matrix. For a high Reynolds number and a large time step, matrix C may not be block
diagonally dominant, since the central finite difference approximation is used to achieve
second-order accuracy spacewise, as well as to reduce the numerical diffusion [12]. Many
traditional iterative methods will then become unstable due to lack of diagonal dominance.
The CGS algorithm [9,10] is an iterative method that achieves fast convergence in this case as
long as a preconditioning matrix is properly chosen. It takes the form

ak=
(r0, rk)

(r0, Cqk)
hk=pk−akCqk

xk+1=xk+ak(pk+hk)

rk+1=rk−akC(pk+hk)

bk+1=
(r0, rk+1)
(r0, qk)

pk+1=rk+1+bk+1hk

qk+1=pk+1+bk+1(bk+1qk+hk). (22)
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Table I. The effect of CFL number on iteration

1.25 2.5CFL number 5.0 10.0 15.0

1 1.462 2.48Average iteration number 7.258 11.901

Incomplete decomposition of matrix C into L and U as a preconditioning matrix is chosen.
The sparsity patterns in L and U are given by

L= [bi, j, ci, j, . . . , di, j, ei, j, . . .] (23)

and

U= [ . . . , 1, fi, j, . . . , gi, j, hi, j ]. (24)

The elements of L and U are calculated by the method given in Reference [13].
The above algorithm was tested on a driven square cavity flow at Re=1000, in which the

Reynolds number is based on the lid velocity and the cavity dimension. Table I presents the
characteristics of the linear system (16), given in terms of iteration number versus CFL
number, when the residual is set by r510−6 in Equation (22). The iteration number in Table
I represents the averaged value necessary for convergence per time step. As the increase of the
CFL number makes the matrix C less diagonally dominant, it results in the non-linear increase
of the iteration number in Table I for a fixed-convergence criterion. However, the present
momentum-coupling method has shown a convergence rate faster than the SIMPLE algorithm
[3] as shown in Figure 2; on the condition that the relaxation factor b for the steady version
of SIMPLE and the time step Dt for the present method are to be taken as large as possible.

Figure 2. Convergence rate.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 443–460 (1998)
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5. ACCURACY

The accuracy of the present method is now tested on a problem which has an exact solution.
A two-dimensional unsteady flow called the Taylor problem [14] has an exact solution to the
Navier–Stokes and continuity equations as

u= −cos(x) sin(y) exp(−2t/Re)
6=sin(x) cos(y) exp(−2t/Re)

p= −0.25(cos(2x)+sin(2y)) exp(−4t/Re)
Ì
Â

Å
. (25)

For a square-flow domain (p/2, p/2), when the exact solution is used as initial and boundary
conditions, the computational residuals defined below are plotted in Figure 3(a)–(c) as a
function of step sizes, Dt and Dx, and Reynolds number. The three residuals are defined by

Figure 3. (a) Taylor problem: computational error vs. Dt (Dx=Dy=0.0748, time=0.6, Re=10). (b) Computational
error vs. Dx (Dt=0.01, time=0.44, Re=60). (c) Computational error vs. Reynolds number (Dt=0.01, time=0.5,

Dx=Dy=0.0748). —, present; P, Braza et al. [5].
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Figure 3 (Continued)

e1=max(�Fi, j− fi, j �)

e2=% (�Fi, j− fi, j �)/Nx×Ny

e3=% (�Fi, j− fi, j �)/% �Fi, j �
Ì
Ã

Ã

Ã

Ã

Â

Å

(26)

where F represents the analytical solution, f the numerical solution and Nx and Ny the number
of nodes in the computational domain.

When the time step and mesh sizes are decreased, the logarithmic residual norm decreases
linearly. This indicates that the present method is of second-order accuracy in time and space.
Exact solutions in Equation (25) suggest that increasing the Reynolds number results in the
slow variation of the variables with time. This implies that the numerical solution will give
good agreement with the analytical solution as the Reynolds number is raised. Figure 3(c)
clearly shows this, demonstrating the superiority of the present method over Reference [5]. The
residuals monotonically decrease with the Reynolds number to the lowest value, 10−6, which
is a very desirable feature in contrast to Reference [5].

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 443–460 (1998)
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Figure 3 (Continued)

Figure 4 compares the CPU time, on a HP 735 workstation, used by the present method
and that by the steady state version of the SIMPLE algorithm, to get the steady state
solution for a driven square cavity flow. The mesh is a uniform 25×25, and the Reynolds
number, based on the lid velocity, V, and the wall length, is 400. It is well-known that
iterative methods require an underrelaxation factor, b, for convergence due to the convec-
tion terms. However, there is no general rule for the optimum value of b. It depends on
many factors such as the nature of flow, the number of grid points, the time step size and
the specific iterative procedure. As shown in Figure 4, the performance of SIMPLE is very
sensitive to the relaxation factor b ; the scheme, in fact, diverges beyond the value b=0.52.
In contrast, the curve obtained by the present method is quite flat over a wide range of
CFL numbers, demonstrating the stability and robustness of the numerical method. Of
course, the particular SIMPLE algorithm used in the present comparison may not be the
one tuned to produce the best results, but it strongly indicates the healthy characteristics of
the present numerical method.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 443–460 (1998)
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Figure 4. The square-driven cavity flow: comparison of CPU time.

6. TEST PROBLEMS

6.1. Steady-dri6en ca6ity flow

The present method is compared with that of Ghia et al. [15] in Figure 5, in which the
u-velocity profile is plotted for different Reynolds numbers along the central vertical line of the
square cavity. The abscissa of the curve for each increasing Reynolds number is shifted
sequentially by −0.2 from that of Re=100, for the clarity of presentation. Here, the

Figure 5. Square cavity flow: u-velocity profile along the vertical centerline. Solid line represents present results.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 443–460 (1998)
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Figure 6. Streamlines in driven cavity flow (time=p/2, Re=1000). (a) SIMPLE with no subiterations, (b) SIMPLE
after 10 subiterations, (c) SIMPLE after 50 subiterations, (d) present computation.

numerical results are obtained up to Re=5000 with the stretched grid 70×70; high Reynolds
number flow (Re\3000) exhibits kinks in the curve near the wall, which agrees well with the
results given by Ghia et al.

6.2. Flow in a ca6ity with an oscillating wall

Computed as a second test is a square-driven cavity flow by the top wall, oscillating with
u=cos(t). Here, the non-dimensional variables are

u=u*/U0, x=x*/a, y=y*/a, t=vt*, (27)

where U0 is the maximum velocity of the oscillating wall, a is the wall length and v is the
frequency. Two non-dimensional parameters are possible: the Reynolds number, Re=U0a/n,
and the frequency parameter, b=va2/n.

The flow aspect inside a cavity depends on the two parameters, Re and b (see Reference
[16]); Re=b is chosen here to construct a meaningful flow in which the non-linear terms in the
Navier–Stokes equations cause maximum effect. In other words, deliberately excluded are the
extreme, well-known cases like the Stokes’ second problem, the boundary layer flow and the
less interesting quasi-steady flow. Figure 6 depicts the selected streamlines at time t=p/2,
when the upper wall is momentarily at a dead point after the first half period. The fluid motion
is then a measure of the time lag, as indicated in Reference [16]. The time step Dt was 0.04 and
the mesh was 30×30, with the smallest grid spacing, Dx=Dy=0.0125; the grid is clustered
near the walls to resolve the boundary layer. Figure 6(a)–(c) represent the results of the
iterative version of SIMPLE: Figure 6(a) obtained without any subiterations, Figure 6(b) after
10 subiterations and Figure 6(c) after 50 subiterations. In contrast, Figure 6(d) is obtained by
the present method. Comparison indicates that the secondary vortex bubble in the middle of
the right wall is not correctly captured by the SIMPLE method until the subiterations become

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 443–460 (1998)
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as many as 50. The CPU time to get the solution in Figure 6(d) was 140 s on a HP 735
workstation, while that for Figure 6(c) was 2752 s.

6.3. Flow around a circular cylinder

Finally, the unsteady flow related to instability of the shear layer was investigated. Figure 7
shows both the sketch of a circular cylinder and the artificial perturbation used in the
computation to expedite the quasi-steady vortex shedding. A modified polar co-ordinate
system is used here to embed a mesh finer toward the cylinder surface, as

x=u, u=Vu,

y= log r, 6=Vr.

The flow variables are scaled by the free stream velocity U�, the radius of the cylinder a and
the dynamic pressure rU�2 . The no-slip boundary condition was applied on the cylinder
surface, and the Oseen solution [18] on the far boundary in the form

V(x, y)y=y�
�U�, outside the wake region, (28)

Figure 7. Vortex shedding behind a circular cylinder (a), with the time-dependent numerical perturbation (b).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 443–460 (1998)
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Figure 8. Strouhal numbers vs. Reynolds numbers. —, present results; , Roshko [23], �, Williamson [24], 2,
Norberg [25].

(V (x, y)
(y

)
y=y�

�0, in the wake region. (29)

The computed velocity field does not, in general, satisfy the global mass conservation. Namely,& 2p

0

6(x, y�) dx"0. (30)

This implies that we cannot keep the compatibility condition by a Neumann condition used
at the exit for the Poisson equation (20), ending up with a non-convergent iterative solution
[17]. To ensure the overall mass conservation, the mass flow rate at the outlet boundary
condition is corrected by evenly distributing the mass residual, calculated from Equation (30),
to the u-cells satisfying Equation (29). Updating of velocity and pressure is then made in the
correction step in the manner already shown in Section 3.

The Strouhal number is plotted in Figure 8 as a function of Reynolds number, for Re5150.
A good agreement with the experimental results is clear. The present data are obtained with
the grid 60×80, Dt=0.05 and the far boundary at R�=115. Figure 9 shows the instanta-
neous streamlines during half a period for a high Reynolds number, Re=1000. The initial time
t=0 corresponds to the instant of maximum drag coefficient, and the half period time t=T/2
to that of minimum drag coefficient. The distinct feature here is that the secondary vortices are
adhered to the rear of the cylinder. These secondary vortices periodically merge with one
another and also with the primary eddy in the Kármán vortex street. The merging of the
vortices described by Braza et al. [5] is clear here. Figure 9(a) and (b) show that a small eddy
in the upper side merges with the dominant central eddy. Figure 9(c) and (d) show that two
eddies rotating in the same direction in the lower side of the rear of the cylinder are merged
into one. Figure 9(e)–(h) show that two secondary eddies of about equal size merge into one
having greater eddy strength. Such mergence results in a bigger eddy which is swept away into
the main wake region. The present results evidently show the pattern of the near wake
formation in more detail than any other report.

The particles injected from the cylinder are swept into the vortices. They present an idea
where the vorticity is distributed in the flow field. Bearman and Graham [19] have indicated
that while the Strouhal number and the drag coefficient could be well predicted by computa-

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 443–460 (1998)
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Figure 9. Streamlines for half a period at Re=1000.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 443–460 (1998)
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Figure 10. Streaklines at Re=1000.

tion, details of the vortex-shedding pattern revealed by the computed streamlines and streaklines
could be different from the experiment. When too coarse a grid is used, along with non-bounded
difference schemes such as central difference and the Leonard QUICK scheme [20], to compute
a flow field of large gradient, it is well known that wiggles can be brought about in the
computation.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 443–460 (1998)
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For a high Reynolds number flow, the region of large flow gradient is extended further
in the wake; hence a coarse grid cannot properly handle the flow. Our numerical experi-
ment showed, however, that reducing the far boundary in the present circular computa-
tional domain did not sensibly influence the basic flow pattern except that only the
Strouhal number and the force coefficients are changed a little. Chosen as a test was a
narrow far boundary at R�=30 with a grid size 180×160 in order to obtain the vortex
pattern at Re=1000, which is a severe computational condition. Each frame of Figure 10
shows streaklines for Re=1000, which were obtained through ten particle injection ports
from each of which a new particle is injected at time interval Dt=0.02. Tritton [21] and
Gerrard [22] have indicated that vortex shedding is in the direct shedding mode beyond the
transition Reynolds number, Re=80. In Figure 10, it is observed that the vortex near the
cylinder is first indented and then folded up to grow as a vortex core in a process similar
to the roll-up of a vortex sheet. The vortex street here is clearly developed by the direct
shedding without any hint of wake instability. The vortices are stretched and elongated,
taking circular shapes as they move into the far wake region. The time-dependent drag and
lift coefficients plotted in Figure 11 show strict periodicity. Obtained was a Strouhal num-
ber of 0.22, with the far boundary at R�=115; in contrast to the Strouhal number of 0.24
obtained with the far boundary at R�=30. It is compared with the value 0.21 given by
Braza et al. [5] The frequency of drag coefficient is naturally twice that of the lift coeffi-
cient.

Figure 11. Time evolution of the force coefficients at Re=1000.
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7. CONCLUSION

In this paper, a new solution method called the ‘momentum-coupling method ’ is formulated to
solve the unsteady incompressible Navier–Stokes equations. This method maintains second-or-
der accuracy in space and time. The present method shows fast convergence and good stability
properties in a relatively large parameter range. The method does not anticipate any hindrance
in extending the present two-dimensional formulation to three dimensions, except that a more
full-frame computer facility is required. The algorithm has demonstrated fast convergence,
robustness and accuracy in computing several benchmark problems such as the Taylor
problem, the square-driven cavity flow and the cavity with an oscillating wall. In addition,
tests on a flow past a circular cylinder proved that a high Reynolds number flow, e.g.
Re=1000, can be computed without difficulty and a very detailed flow pattern associated with
direct vortex shedding can be observed.
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